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Abstract: In this study, we examine the determinant theory associated with Neutrosophic Hypersoft
Rough Fuzzy Matrices (NHSRFMs) and investigate several of their structural properties. An
improved approach for computing the determinant is introduced, specifically designed to handle
matrices of larger dimensions with greater efficiency. Beyond the theoretical development, the
proposed method demonstrates significant potential for integration into software systems dealing
with uncertain, vague, or multidimensional data. To highlight its practicality, we provide a detailed
illustrative example along with an explanation of how the approach can enhance computational
accuracy, reduce processing time, and improve decision-support capabilities in software

applications.
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1. Introduction

The representation and manipulation of uncertainty have been core to advancements in soft
computing, especially through foundational theories like fuzzy sets by Zadeh [1] and rough sets by
Pawlak [2]. These frameworks were designed to handle vagueness and indiscernibility, respectively,
and have laid the groundwork for numerous hybrid models. Over the years, the evolving complexity
of data has necessitated more expressive structures, leading to the development of intuitionistic fuzzy
sets [6] and generalized fuzzy matrices [7, 8, 9]. Building on these paradigms, neutrosophic sets,
introduced by Smarandache [25], generalize fuzzy and intuitionistic fuzzy sets by incorporating the
degrees of truth, indeterminacy, and falsity independently. This has significantly enriched the
capacity to model uncertainty in systems that are imprecise, incomplete, or even contradictory. The
application of neutrosophic logic in matrix theory led to the formulation of neutrosophic fuzzy

matrices, which are essential in decision-making, pattern recognition, and artificial intelligence.

Recent contributions have explored various algebraic properties and generalizations of these
matrices. For example, Anandhkumar et al. [3, 4, 5] introduced novel operations such as pseudo

similarity, inverses, and partial orderings for neutrosophic fuzzy matrices. These concepts have been
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crucial in defining matrix-based frameworks for handling complex data relations. Furthermore,
works on k-idempotent and kernel-symmetric matrices [10, 11, 19] have extended the applicability of
neutrosophic matrices in algebraic systems. Parallelly, determinant theories for fuzzy and
intuitionistic fuzzy matrices have been studied extensively [8, 9, 13-15, 17, 18, 21-23], paving the way
for determinant theories in neutrosophic soft matrices [24]. These contributions are instrumental in

enabling more rigorous mathematical operations on uncertain data structures.

On another front, the integration of neutrosophic, soft, and rough set theories has created new
hybrid frameworks. Al-Quran et al. [30] proposed a neutrosophic soft rough set model that enhances
approximation under uncertainty. Similarly, Das et al. [31] and Kamaci [32] presented frameworks
combining neutrosophic soft sets with rough and hypersoft structures, offering enriched semantics
for real-world applications. Smarandache’s [33] extension from soft sets to hypersoft and plithogenic
hypersoft sets further broadens the spectrum for handling multi-attribute data with complex
interdependencies. In particular, the work of Anandhkumar and collaborators [26-29] has
systematically advanced the structure of secondary, interval-valued, and Fermatean neutrosophic
fuzzy matrices. These contributions aim to capture multidimensional uncertainties and symmetries,

laying the foundation for deeper algebraic investigations and practical implementations.

1.1 Abbrivations
IEM: Intuitionistic Fuzzy Matrices
IFSs: Intuitionistic Fuzzy Sets

NFM: Neutrosophic fuzzy matrices.
NHSRFM: Neutrosophic Hypersoft Rough Fuzzy Matrices

2. The structure of this article is arranged as follows: In Section 3 presents the objectives of the
present work, laying the foundation for the study.. Section 4 highlights the Comparative of
NHSRFM model with the existing soft models. Section 5 introduces the Novelty of the work,
which formally defines Neutrosophic Hyper Soft Rough Fuzzy Matrices (NHSRFMs) and their
mathematical structure. In Section 6 present Preliminary of the Neutrosophic Hyper Soft Rough
Fuzzy Matrices In Section 7, relevant theorems and results are presented to establish the theoretical
foundations of the model.

3. The objectives of the present work are given:

e To develop determinant theory for Neutrosophic Hyper Soft Rough Fuzzy Matrices
(NHSRFMs): Establish fundamental principles and properties of determinants specific to
NHSREMs, focusing on unique characteristics within the neutrosophic fuzzy domain.

e To investigate determinant relationships in NHSRFMs: Prove key determinant
relationships, such as det (Padj (P)) = det (P) =det (aq’] (P ) P). thereby expanding

mathematical understanding within NHSRFMs.
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e To propose an efficient method for computing determinants in larger NHSRFMs:
Introduce a novel technique for calculating determinants of NHSRFMs with high
dimensionality, aimed at simplifying computation for matrices with more rows and columns.

e  To construct an algorithm for solving decision-making problems: Develop a systematic
approach leveraging NHSRFM properties to address complex decision-making scenarios,
enhancing practical applications of NHSRFMs.

e To validate the proposed methods with an illustrative example: Demonstrate the
effectiveness and applicability of the determinant theory, methods, and algorithm through a

practical example, solidifying the proposed study’s relevance.

4. Comparative of NHSRFM model with the existing soft models

N

-\/ v v x x x
-J s vk x x
-J v x v x x
-J v x v v x
.J sl e x x

5. Novelty of the Work

Despite the significant progress in the study of fuzzy, intuitionistic fuzzy, and neutrosophic
matrices, existing literature largely focuses on basic operations, inverse types, partial orderings, and
determinant theories [3-5, 7-9, 14, 18, 21-24]. While hybrid models involving soft sets, rough sets,
and neutrosophic frameworks have recently emerged [30-33], a formal integration of quadri

partitioning, interval-valued representation, and neutrosophic fuzzy logic remains relatively
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unexplored. The novelty of this research lies in the development and algebraic analysis of a new

class of NHSRFM, which introduces the following original contributions:

(i) New Structural Paradigm:
The proposed NHSRFM introduce a quadri-partitioning of the matrix structure, which
allows separate modeling of membership, non-membership, indeterminacy, and hesitancy
intervals. This is a significant extension over traditional and existing symmetric or k-
symmetric neutrosophic fuzzy matrices [10, 11, 26].

(ii) Integration with Hybrid Soft Set Models:
While existing works such as [30-32] focus on neutrosophic soft sets and their hybridization
with rough or hypersoft sets, our framework combines neutrosophic fuzzy matrices with
soft set-based parameterization, facilitating applicability in complex decision-making
environments.

(iii) Generalization of Determinant and Ordering Concepts:
The paper generalizes determinant concepts for the proposed matrices by extending works
like [8, 9, 23, 24], and introduces new ordering relations suitable for NHSRFM which

capture both structural and semantic dominance.

5.1 problem statement and motivation

In recent years, the study of uncertainty-based mathematical models has gained significant
importance in computational mathematics, decision sciences, and artificial intelligence. Classical
matrices and their determinant theories, while effective in crisp environments, often fail to
address the challenges posed by uncertainty, vagueness, indeterminacy, and multi-
parameterization in real-world problems. Existing frameworks based on fuzzy, rough,
neutrosophic, and hypersoft sets provide partial solutions but remain insufficient when these
characteristics coexist within large-dimensional data structures. Traditional determinant
computation methods further encounter scalability and efficiency issues when applied to

complex neutrosophic hypersoft rough fuzzy matrices (NHSRFMs).

This research is motivated by the urgent need for a unified and computationally feasible
determinant theory tailored to NHSRFMs, capable of representing and processing higher-order
uncertainty. By introducing an enhanced approach for determinant calculation, particularly
designed for larger matrices, the study not only contributes to theoretical advancements in
neutrosophic mathematics but also supports practical applications in software development. The
proposed framework has the potential to improve computational accuracy, optimize processing
efficiency, and strengthen decision-support capabilities in software systems dealing with
uncertain and multidimensional datasets, thereby bridging the gap between abstract

mathematical models and real-world computational applications.

5.2 Improved Flow of objectives, novelty, and theorems.
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The main objective of this study is to establish a robust determinant theory for Neutrosophic
Hypersoft Rough Fuzzy Matrices (NHSRFMs), particularly addressing the limitations of existing
models in handling large-scale uncertain data. The novelty of the proposed approach lies in its
ability to extend classical determinant computation to higher-dimensional neutrosophic
environments while ensuring computational efficiency. This novelty is mathematically
formalized through a series of theorems, which guarantee the stability and scalability of the
method. Beyond their theoretical significance, these results have practical implications for
software development, where improved determinant computation can enhance data processing
accuracy, reduce computational costs, and strengthen decision-support capabilities under

uncertainty.

5.3 Consistency in mathematical notations

To maintain clarity and avoid confusion, consistency in mathematical notation is essential
throughout this research. The truth, indeterminacy, and falsity components are uniformly denoted
as T, I, and , respectively, and every neutrosophic element of the matrix is expressed in the form
aij=(Tij, 1ij,Fij). Subscripts are consistently used for row and column indices, while superscripts are
reserved only for denoting levels or versions when necessary. The determinant of a Neutrosophic
Hypersoft Rough Fuzzy Matrix is denoted det(A) or |A| and this notation is applied uniformly in all
definitions, theorems, and examples. By standardizing the representation of sets, elements, and
matrix operations, the proposed framework ensures readability, minimizes ambiguity, and facilitates

seamless connections between the theoretical results and their practical applications.

6. Preliminary

Definition 6.1 (Addition) Let P = [P

ij

Rl=|(z) B (71 F Y fana [0,]=| (2,00 (710 F))

we define the addition in NHSRFMs as follows:

] and Q= [Q,,] be two NHSRFMs of same order, where

i ot

max(]_"ﬁp,Z_“UQ),maX(ZU_P,LjQ),min(E”P,EUQ);maX(Y_“ P f Q)’
Pro= P70\ (PO
max(]l./. A, ),mm(F,./ F, )

Definition 6.2 (Multiplication) Let P = [FI‘J:I and Q= [Q’J:I be two NHSRFMs of same order,

=050 =0
where and [Qu] = [(ZyQ’l,-jQ’FUQ);(T” ,I!,, ,F,./. )} we define the multiplication in
NHSRFM as follows:

P.Q:[min(?_"ﬁP,Y_"”Q),min(LEIP,L/Q),maX(E”P,E!]Q);min(T_",/P,f,Q),min (Z/P,;,/Q),max (I?,/P,F,Qﬂ
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Definition: 6.3 Let P:[(p "plp F),(;‘__T,; _UF)JE(NHSRFM),, and let Q be a

matrix from P by striking out row ei, row e,... row ek and column r1, column r2,..., column rx. we

define P(e‘ @ ekj:det(Q).

A S

Remark:6.1 We can write the element g of adjP = Q = (q3) as follows:

- ' — I — F
Z H |:( tﬂ'(t) ’pm(t) ’pm(t) ) (pm(t) > Pty > P ):l where nj = {1,2,3,...n}\{j} and

ﬁeS,, oy 1EN;

Sn‘” is the set of all permutation of set nj over the set ni.
i

7. Theorems and Results

Theorem:7.1 P € (NHSRFM), then

L -7 =1 —
(i det(P):|p|:z[(gf,gzjg,v);(p” 2.5 )}f;,ie{l,z...,n}.

t=1

T I F\ (T -1 F T I F\ (T T — I — F
|:(£1e ’Ele ,Ele );(ple ’ple 3ple )} |:(£1f ’glf ’Elf )9(p1/ 9p1f 9p1/. ):| 1
(if) det(P) = S P(
e<f T 1 F\ (> T —- I — F T 1 F\f>Z T — I — F
|:(£2€ ’£2e 1223 );(p2e 9p29 9p29 ):| I:(Ezf ’22_1“ ’22_)‘ )9([72/ 9p2/ 9p2f ):l

where the summation is taken over all e and f in {1,2,...,n} such that e <f.

e

Theorem: 7.2

T 1 F\ (- T — 1 — F T I F\ (= T F

|:(£]r1 ,Blr ’Blr )’(plrl ’plrl ’plrl ):| |:(£1rk ,Bll‘k ’Elrk )’(plr ’plr ’plr il

r ; F\ (- T — I — F r / - r— 1 — F

det(P) — (£2rI ’£2r| ’BZrI )’(py] ,pz’] ’erl ) (£2rk ’BZrk ’BZrk ) (pzy ’p2' ;pyk )
r ! F\ (— T — 1 — F T / — 71— 1 — F

(Ekr ’Ekrl ’Ekrl );(pkr‘ 9pkrl ’pkrl ) (Bkr]‘ ’Ekrk ’BkrA ) (pkr ’pkr ’pkr )

1 ... k
P
A
where the summation is taken over all 7,7,,...,7, € {1,2,...,n},such that r, <r, <..<7,.

Proof: Let S(rl,rz,...,rk)Z{O':{1,2,...,k}—){r‘l,rz,...,rk}/d is a bijection}. Then

T 1 F
p > P > P )3
T — ] — F (_na(n) —no(n) ~=—no(n)
det(P): z [(216(1) ,PIO_(I) aplam ) (pm(l) s Pioqy > Pioq) )}

o€esS,

— T — I — F
pna(n) ’pna(n) b pnd(n)
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-3

R <ry<.<rj

-3

1<K <.<n

=det Z

1 <ry<..<n

{12, k}ES("l,Vz,»--J/g)[

0'{1,2,...k}eS (K, ly)

2,

T 1 F
|:(£lr ’Blr ’Elr )’(

T I F.
|:(£2r ’BZr 9227‘ )’(

r I F
|:(£kr Py, 2Py, )’(

T I
Ela'(l) ’ 210'(1)

P

T I F\. (=
Elo’(l) ’Elrf(l) ’Elrr(l) )\ Proq)

Ry
Py )’(pla'(l) s Pigy 2 Pro

— T — 1 — F
p]rl ’plr] ’p]rl )

- I — I — F

er] ’erI ’erI

— I — I — F

pkrI Dpkr1 71)101

)

)

] —

F
s Pioqy > Pioqy | |

T I
l:(]_)Zrk ’ l_)2rk ’ £2rk

i

T —

(pna'(n) ’pna'

T
F ):| Eno"(n) ? 2;10"

T 1 F
|:(£er ’l_)er ’l_)lrk )’(
H

T 1 F
|:(£ka ’Ekrk ,Ekrk )’(

T I F\.
Bno’(n) ’Eno’(n) ’Eno'(n) ’

— I — F
(pnrr(n) 3pnr7(n) ’pno'(n) )

1 F.
(n) ’BU. ’

I — F
(n) ’pna'(n)

- I — I — F

p]rk ’p]rk ’plrk

Y e

F
erk 7p2rk 5p2rk )

— I — I — F

Py sPu > P,

)

)

Lemma 7.1 Let P = be a NHSRFM.
ZT,KI,I_’F : ;T’;I,;F §T’§,,£F , ;T,;I,EF
(r'x) (s5"5")
Then
[(ET’EI’BF);(;T’]—?I,]—?F) [(QT,QJJ(ZF);((;T,;,(}F)} I:(}:T’KI’ZF),(;T,;I,;F)jl [(QT,SI,QF);(ET,;I,;F):I
det . det
€ [(ETHDIJEF)Q(;T,;,;F)_ [((zy’q,qp);(;,(?,;)} ¢ I:(KTJ’ZI”:F);(’:T,;I,I_’F)] li(gT,slng);(;T’;l,EF)i\
[(BT,EI’EF);(ET’]—]I,;F)} _(qr’q >qF);(6T,;,c;F)} {(}:r,’: - ),(I_’T,}_”I,}_’F)il {(QT,QI,SF),(;T,;[,;F)}
_ [(gTapl,gF);(?,?,l_ﬁFﬂ (¢"g ,gF);(QT,(}',éFﬂ {(zT,r ,rF),(;T,;',?F)} {(gTagl,sF),(ET,EI,EF”
<det(P)
Proof: We see that
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[(ET’ElaEF);(;T,;I,;F)} _(c_]r’g/’gF);((;T’gl’gF):l
—T —I —F : T I F =T —I —F
Ap.p, )} _(g 4q'\q );(q 4 .q )}

1

—_—
s
s
IS

~

N —
~
=
=

IN

Hence the theorem.

Theorem:7.3 Let P € (NHSRFM ) then

() det(P(2=>1))det(P(1=>2))<det(P).
(i) det(P(2=>1))det(P(3=>2))<det(P).
i) det(P(p=>q))det(P(g=>k))<det(P).

Proof: To prove (i) det(P(Z = 1))det(P(l = 2)) < det(P).
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T I F - T — I — F
|:([_711 Py 0Py );(pll » P11 s Pu :l |:(
T I F — T — I — F
|:(£11 Py 0Py );(pll » P11 s P :l |:(
i T I F — T — 1 — F I F — 7 — | — F
(p Ly, 0P, ) (ple »Pre s Pre ) l: ’Elf Py, );(plf »Pir > Py )i| 1 2
P
I F\ (= T — 1 = F (e fj
( ’Elf Py ) Piy > Piy > Piy
- = F T — 7T —1—F
( lnl 7p1n1 ) (pln—l 7p1n 1 ’plnl ):l [(Eln :p 7p1n ) (Pln ,Pl,, ,pl,, ):|

- T — I — F T I F - T — I — F
P, ’pl,,l ) (plnl s Pin-1 > Pip ):l |:(£1n Py, 5P, );(pm > Pin > Py ):|

— T — I — F
12 :pz 9p12 ) (plz ’plz 5p12 ):| (1 2]
P

— 7 — I — F 1 2
plz ,pu P, ) (pu s P12 s Pio )}

— T — I — F
)(ple 7ple ’ple

T F\ (— T — 1 — F\| T / F\ (— T — I — F\]
(Ble Py, 5P, ) (ple »Pre s Pre ) (£1f ’Blf ’£1f ) (plf Pip Py ) 1 2
= - o oC P
; T I F\ (- T —-1I—F T I F\ (- T — I — F (6 fj
» (Ele ’ple ’Ele )’ Pie s Pre s Pre £1f ’plf ’£1f ’ plf ’plf ’plf
B M (—T—1—F\] [ T F\ (— T — 1— F\]|
(Ele ,p]e ;p]e )9(pe 3p1e aple ) (Elf ’Elf ’Blf ):(plf :plf ’plf ) 1 2
:;_ F\ (— T —1—F\| [ F —T—I—F_P[e fJ
' (Ble Py, 5P, ),(pe »Pre s Pre ) (Elf Py 0Py ) (plf Py Py )
T I F - T — 1 — F T I F - T — 1 — F
Z (£2g Ly 2 Py ); Prg 2 Pag > P2y )_ (£2h Loy 2Py, );(p”l 2 Pon > Pon ) P 1 2
o T I F\ (= T — 1= F ( T F)—T—’—F g h
Py Py 2Py P\ Prg s Pog > Poyg | Py 2Py o Py, Pay s P ,th

— 7 — 1 —F r 1 R\ (= T— I—F
(ple »Pre > Pre )J [(]_ju PPy, ) (plf »Piy Py )J

F — 7 — I — F T )i F — T — I — F
) (ng »Pag 5Py )} [(EM Py, 0P, (pzh s Doy > Pay )}

IN
1
—_—
I

I3
S
I3
IS
I3

P g

We now introduce symbols €2,,Q,, Q[
ros

J and Q. Define

—Tr—1—F T I F\ (— T — I — F
Q[p qj |:( le :p )9(ple 7ple aple )j| |:(l_)1f 7211- ’l_)l/ )7(p]f :plf ’plf ):|

r I — 7 — [ — F T 7 F\ (- T — 1 — F
(£2g 2Py, 2P, ) (ng »Pag »Pag )} [(22,, Py, 0P, );(th >Pan > Pan ):|
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1 2 1 2
P P
e f g h
a- Y Q(p quzg(p q}
(e,f):(g,h) r S e<f r S

Q- Y Q(p qj and Q=Q +Q
ATem) TS

Then we see that

T I F — T — I — F T I F - T — I — F
(] 2] [(211 Py Py );(p” »Pri s Pu )} [(212 Py, 0Py );(pu P s P )} [1 2)
Q P

B 1 2

1 2 T I F\ (- T — I — F T I F\ (— T — I — F
I:(le 2Py 5 Py );(pﬂ 2 P21 5 Pa ):| [(222 Py 2Py );(p22 Pa s P )}
O, =det(P)
det(P(2=1))det(P(1=2)) <Q=det(P)+Q,.

We show that (2, < det (P )

We consider two separate cases.

1 2
Case 1. We consider p = Q(l 3}, atermof Q,.

Let

B T 1 F\ (=T —1—F T ] F\ (= T — 1= F 1 2 1 2
P _[(211 Py 5Py )’(pll »Pu s P )J[(Z_?zs Py Py )’(p23 1P > P )JP(I 2jp(1 3

T J F\(=T—=1—=F T J F\ (=T —1—F 1 2 1 2
D> :[(]_912 ’B]Z ’]_912 )’(plZ » P2 s P2 ):H:(le ’Ezl ’221 )’(p21 » P21 5> P ):|P[1 2jp(l 3
Then p=p +p,,

T I F - T — I — F T I F - T — I — F
[(1_711 Py o Py );(p” »Pii s P ﬂ [(213 Py Py );(pB P > Pis ﬂ 1 3

P
T I F\f>-T—-1—=F T ! F\ (> T—-1—F 13)

(221 9[_721 3221 )9 p21 ’pzl 3p21 (223 ’223 ’223 )’ p23 ’p23 9p23

< det(P)

D=
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J2BS

|:(£11 Py Py );(p” » P> Pu ):l [(212 Py, 0Py, );(plz P2 s Pra )i| 1 1
P

T I F\ > T —- 1 —F T I F\ > T — 1 — F 11)
(221 7221 3221 )9 p21 7p21 ’p21 (222 9222 ’222 )’ p22 ’p22 ’p22

< det(P)
1 2

and Q[ deet(P).
1 3

1 2
Case 2. We take Q2

n-1 n

Let

T I F\ (— T —1— F r ; — 7 — I — F 1 2
q1:|:(£11 9211 7211 )a(pll 7p11 apll ):||:(£2n ’£2n 52 o ) (pz,, ,p2n ’p2n )jlp 1 2

[ 1 2}
P
n-1 n

and

r 1 F\[(—T—1—F r J FN(— T — I— F 1 2
q, =[(£12 P, P, );(pn s P s Pro )}[(22,11 Py 0Py );(p2n—1 sPan-1 s Panc )}P
1 2
( | 2j
P .
n-1 n
1 2
Then Q =q,+q,.
n-1 n

To show that ¢, <det (P ) and g, <det (P ) we observe all coordinates of the elements pj

1 2 1 2 1 2
involvedin P and P and P
1 2 1 2 n-1 n

The coordinates of the elements pj involved in these determinants are all coordinates of the elements

of the k th —row Pk of P, fork > 3. Therefore, if welet ¢ = ps, \Pu, 2---Pisani-Puma» then we see

that
o <([(2 2 K o[ (2 2 a2 ) o< e (),

For qz, let ¢ = p;, Pa,2Psps-PuizPany> then we see that

T I FN\ - T — I — F r— 1 — F
QZ < |:(£12 ’212 5212 )’(plz >p12 9p12 ):||:(£2nl apzn 1 ap2n1 ) (pz,,l ,pz,, 1 ,pzn 1 ):| C
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< det(P)

e

f

For any Q(
g )

that Q( ¢ ZJ < det(P).Thus (i) holds. (ii).
g

— T — I — F

P31 s P31 5P

(31 ’p31’p31 )(

j ~ [(leT’£21[’£21F )’(
[(leT’Ezll’leF);(

(N
det(P(2=1))det(P(3=2))
(PR
|:(p3e ’p3e P, ) (
(22, )

g h
e f

2 3
g h

23
e f

— T — I — F

ple ’ple ’ple

)

- I — I — F

p3e ’p3e ’p3e

)

e<f
g<h

- T — I — F

ng 7p2g 7p2g

— T — I — F

p2g ’ng ’ng

)} [(232T’£321> ") ;(

— T — I — F

D 5Py 5P

— T — I — F

D3y 5 P31 5P

]

:<£2hT’£2hl’£2hF )’(

j , we apply either the case 1 or the case 2 and we can deduce
e.f)*(g.h)

First, we consider

— T — I — F

P 5P 5Py

- T —1—F r 1 F\[([—-T—1—F
[ 9, ’qn ’qn (q” 4 -9n )} [(6_112 4y 09, );(6112 dh2 9 ):|
— T — 11— F T I F\ (- T — I - F
(B ap3l 7p31 ) (p?,] 9p31 3p31 ):| [(232 5332 ’232 )9(p32 9p32 7p32 ):|
I F\ (— T — I — F B T I F\ [— T — I — F
(g 95 095 );(q21 2921 592 ) ((122 9y 29 );(922 42 292 )
— 7 — | — F r T 7 F - T — I — F
( g, 7q21 4,5, ) (‘]21 2421 592 )} (6_122 4,5, 249,, >;(Q22 292 »92 )}
- T — 11— F\] T 7 - 7T — 11— F
|: 21 7q21 7q21 ) (q21 ,q21 >Q21 ) (g32 ’QSZ ’q32 ) (q32 7q32 9q32 )

)

— I — I — F

P P sP3p

)} [(BazT’Bszla&zF )(
)} [(23;’23;72; )(

- T — I — F

Psy sP3 5P

—T—I—F

N\Piy sPiy 5Py

( T I

Blf ’Elf ’Blf
(2,2, )
£3f ’£3f ’£3f

—T—I—F

Doy 5Py apzh

)
]

P(

- T — I — F

Psr sP3r 5 Psy

—T—I—F

Pap 5Py ’pzh

T I F\.
£2g ’£2g ’BZg ?
T I F).
Bzg 5£2g )Ezg b
( T I F).
£3e ’£3e ’£3e ’

)

— r — I — F
ng ’p2g ’p2g

)

g<h
e<f

- T — I — F

p3e 9p3e ’p3e

:(Bzhr’gzhl’gth )’(

)} [(ﬁsz’BgflaE”.F);(

T i F\ (— T — I — F
)} [(1_72}1 Py Py );(ch 2P > Pay
- I — I — F

p3f 9p3f 9p3f

)
]

g

]

)

-7
|
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Ao e 7
:;P(‘Z g

Next we prove that

K(g hj < det(P)
€ S Namster)

.We consider two separate cases.

1 2
Case 1. We take K[l 3j.We see that

KG i}z([(EZ]T’EZII,EﬂF);(
Ly

T I F\.[ r — I — F
+ (pzz Py Py, )’ Pxn >Pn sPn

P

T F\ (— T — I — F\]

I:(EZI P, 5P, ) (p21 s P21 > P )
< i
- T I F — I — I — F T
[(231 Py Py, )’(pl 2 P31 P )

T I F\f= T — 1= FY]

I:(Bﬂ P, 5P, ) (p21 P21 5Py )
+ Z

F\ (— T —1— F
[(Bu Py 0 Py ) (p31 »P315 P )

< det(P)+det(P)=det(P)

n-1 n
Case 2. We take K ! 5 We see that

- T — I — F

Py 5P 5P

)}[(235’2331>1_933F )(

r 1 F\[(—T—1—F
)}[(231 Py 0 Py );(p31 2 P31 P

— T — I — F

P33 5 P33 5 P33

i
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n-1 n - 11— 11— F r 1 F\[—T—1—F
K 2 = |:(p2nl ’pzn 1 ’p2nl ) (panl ’p2n71 7p2n7] )}[(232 9232 9232 );(p32 5p32 5p32 )}
2 3
P
1 2
T -1 —F T 7 F — T — I — F
[(g Z ‘1 ) (‘] 209 209 2n):||:(£31 Py o Py );(pm » P31 5 P )}

Al )

+

2 3 2 3
Considering the coordinates of the elements pj involved in P (1 2j P ( 1 j, we claim that
n—1 n
T 7 F\(f— T— I— F r 1 R\ (= T—I1—F 2 3 2 3
([(22"—1 ’Ezn-l ’an—l )’(p2"1 2 Pant s Pany )}[(232 ’232 ’232 )’(psz s P35 Py )DP[I 2]1)[”_1 "
<det(P)

r 1 F - -1 —F r 1 F\[(—T—1—F 2 3
I:(g wd 204 2»:);(q > a2 2”)}[(231 Ly 0Py );(p31 P15 P )} P
1 2
2 3
P( jgdet(P)
n-1 n

Similarly we can prove (iii).

and

Hence the theorem.
Theorem7.4.Let P:|:(]_7 T,E”Ia]_yi/_F);(I_?”,T71_7’/121_7”,F):|,Q:|:(gifr76_]i/13gﬁp);(547175’/17501:)}7

i

i

R:[(zf,r ! r[/,F);(I_’,:,T,l_’..[ ;!,,F)} e (NHSRFM), . Then

—Tr —1—F — 7 — 1 —F
@) If [(EiiT,Eiil,EiiF);(pﬁ s Pii > Pii )jlZ[(EikT’Bikl’EikF);(p”‘ »Pik »Pix ):l

(k=1,2,3,...n) for all 1<i<n,then

— 7 — 11— F — 71— 11— F
det(P) = [( p,p.p)); (pn Dt s Pu )}[(gzzr,gzj,g;);(pzz sD2 P )]
|:(£nn ’Enn ’Enn )’(pnn ’pnn ’pnn ):|

P R
(ii) det(o QJ=det(P)det(Q) where (<0,0,1>) e (HSRNFM),.

(i)  det(PP")2det(P)
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Proof: (i). We have

r 1 p\N[(—T—1—F r / P\ (— T — I — F
[(2“ P, P, );(pn »Pu > Pu )}[(222 P, Py );(pzz »Pxn > P )}

>
[ERERTRE TR AR |

- = 1= F T c U F
1_70(1) aplg(l) aplg(l) N Pioqy »Pioqy > Pioq <P 2602 P 26020 P 26020 P 2002) >

r — I — F
[ na(n) ’pna(n) ’pna(n) ) (p"a(") ’p’la(”) ’p"O'(") ):|

forevery o€, .
Since

|:(£11T7£1117£“F);(;llrﬁglll’zlllr):lZ|:(£ikT9£ik[:]_?ik )'(;lkral_jlklal_jlk ):| (k:1,2,3,...,7’l)

forall 1<i<n.

Hence

- 71— I — F
det(P): Z|:(£la(l) ,plo(l) ,Pla(l) ) (pla(l) s Pioy » Pioqy )}

oeS,

T F\(— T— 11— F
li(Bno’(n) ’Bno’(n) ,pncr(n) )’(pno'(") ’p”lo'(") ’pno'(") )
r 1 F\[(—T—1—F r i F\ (— T — I — F
:[(211 Py 0Py );(p” »Pu s P )}[(En Py 2Py );(pzz » P2 > P )}

(222 K 2]

This proves (i)

.. P R T I F . -r -1 -—F
(11) det(o szli(‘g U’§ U’LE [j))(s ij’S ijas ﬁ)j|2n.

P R T 1 F =T -1/ —F
det(o Qj: Z |:(‘S 16(1)’§ 10-(1)7 10(1)) (S lo(1)»S 1o(1),S lo(l) ):|

oeS,,

T 7 F =T -1 —F
(g 2no‘(2n)"§ 2no‘(2n)’§ 2no‘(2n)); S 2no(2n),S 2n0(2n),S 2nc(2n)

T I F -T =1 -F
= (g 16(1),§ 15(1),§ 15(1)); S 1o(1),S8 16(1),S8 1o(1) | |.--
c€S,,,o(i)<n (if i<n)

; F -T -1 -F
(§ 26(2n)> S 20 (2n)> S 2m(2n)) S 2n0(2n)58 2n0(2n)5 8 2n0(2n)
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T 1 F T I —-F
(§ 16(1)>S 16128 15(1))’ S 16(1),8 1o, S o) | |-+
ceS,,,o(i)<n (if i<n)

J r -7 -1 -F
|:(§ 2n0(2n)? S 2n0(2m)> S 2,10(2,,)) (S 2n0(2n) > S 2n0(2n)5S 2no'(2n)):|+<0,0,1,1>

-7 -1 -F
+ s 15(1)=S 16(1)> S 10(1)) (S lo(),§ 1o(1),S la(l))}

o€S,, 3k>n, ifo(k)<n |:

7 F =T -1 —F
(§ 2no‘(2n)’s 2,,0—(2,1)75 2,15(2,,)) S 2no(2n)5S 2n0(2n)sS 2no(2n)

S no'(n)sS no'(n)sS no'(n)

1 F
r ; P T 7 —F (‘S no"(n)"g mT'(n)"g no"(n))’
= z |:(§ 1'(y>S 15°(1)>S 10(1)) (S lo'(1),8 1o'(1),§ 10(1)):| (_T - —-F det(Q)

T 1 F .
):| ‘2 no'(n)"g no’(n)"g no(n) )

e o)
( )

-T —I -F
= Z (g 10(1)35 1o(1)>S 10(1)) S 16(1),S 1o(1),S l1o(1)

oes,

S no(n)sS no(n),S no(n)

— det(P)det(0).

This proves (ii)

(iﬁ)PPT{(k bl 5[0 U,Z'U,ZFU)} ,

We have, for every o €S,.

[(1_1 b ) 1,,2’,,,17,,)}

n

T 1 F\ (- T -1 F T 1 F\ (T -1 F
= [(Eik P, P, );(pik sPix »Pix ):|[(£kj ’Elg’ ’Ekj )’(plg sPii > Py ):|

k=1

[(ﬁTllahllla@Fn)Q(ZTU:ZIH,ZFII)}[(&Tzzahlzzah ) (h 22, ;1122 ;lez)}
[(hrnn’hlnn’hlr,m);(ZTnn,E]nn,;ann )j|

n

k=1

v

F
T — I — F (Bna(n) ’pna(n) ’pna(n) )’
(P]G(l) :pla(l) 2Py ) (plo(l) s Pioqy » Pioq) )

— T — 1 — F
pno‘(n) s pno‘(n) b pno’(n)

Hence

- Z|:(£ikT i Bikl i BikF ) ) (;ikT ’ ;ikl ’ ;ikF )}j “(Z_:UE%T’ Bnkl 5 BnkF );(;nkT’ ;nkl > ;nkF )])
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det(PPT)Z[(ﬁTn,ﬁlll,hFll);(ZTU,ZIU,ZFU)}[(ﬁrzz,ﬁlzz,h ) (h 2, lez ZFzz)}...
(Bl )|

T I T — I — 2
(Ela(l) ’Ela(l) ’21 ) ) pla(l) ’plo(l) ’pla(l)

T

- = F r— I — F
! (Eno‘(n) ’Bno‘(n) ’pno‘(n) ) (p”o'(") ’p”U(”) ’p"U(”) )
= det(P).

This proves (iii)
Hence the Theorem

Theorem 7.5 Let P = (pij) be a NHSRFM. Then we have the following
det( Padj(P)) = det(P)=det(adj(P)P).
Proof: We prove that det (Paa"j (P )) =det (P )

We first consider n=2.

r — 7T —1—F — 7 —1—F
|:(£11 P, 5P, ) (pll > P> P )i| |:(p12 P, 5P, ) (p12 »Pia s P ):l
LetP_ T 1 F_T_I_F T I F_T_[_F
(221 Py Py );(pzl »Par > Py ):l [(222 Py 5Py )’(p22 P> P :|
r F\ (— T — 11— F F\ (— T — I — F
y [(Ezz P,y Py, ):(pzz P2 s Pxn )} |:(p12 P, P, )’(p12 » P2 s Pin )}
a](P) F\ (— T — I — F F\ (—T—1—F
|:<£21 Py 0Py, ) (p21 s P21 5 P ):| [(p“ P 5Py ) (pll » P> P )j|
det(Padj(P))=
—T—1—F —T—1=F
det(P) |:(£11T,£111,£11F);(p11 P s Py )][(3127,3121,31;);([712 PP )}
—T—1-F —T—1=F
{(leT’lel’I_?ZIF);(pZI PP )H(Bzzr’gzzl’gzj);(p” P 2P ” det(P)

— T — 1 — F — 7 — 1 —F
_det(P)"'([( ?, ap“ P, ) (pll > P11 s P ):H:(BlzT’Elzl’Ele);(plz »Pia s P2 )}j

[([_)21 Ly 2Py );(pZI » P> P )}[(]_)22 Py Py );(pﬂ P> P )}
< det(P)

Next consider 7> 2. We can see that

Padj(P) =
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0 [T AR | 3 [ VAV AR Al | S ol [ AR Py |14
Z[(BJ,EZ/,BZ[F);(;zzr’gzrl’;;)}Plx Z[(Ezlr’&ll,&f);(;yT’;zt]’;sz):lpz, Z{(B;,B;,BZIF)Z(;;a;ztla;ztp)}Pm

Z[(ﬁ,{)p P, )’(;,”T,Eml’;nf)]])v Z[(Blur’p P ) (;an’;ml’;mp)}Pb Z[(er’gml,gmf);(;mT’;ml’;mF )}Pm
:(Z[(l—?itT’Bitl’pt ) (;”T,EUI’;”F)}}?#).
det(Pad](P)) = Z (Z[(E]ZT’BHI,EUF);(EUT,;UT’;UF ):| P”(l)t)(zli(E%T,Bml’EZtF );(;2IT,;2t[’;21F):| Pﬂ@)[)

res,

...(Z[(E,”T’BMI’EMF);(;ntT’;ntl’;ntF ):|Bz(n)tj

It is evident that each diagonal entry of the matrix Padj(P) equals det(P). We demonstrate this result
as follows.

(i) Let us define

T 1 F\ (- T -1 —F T 1 F\(f T - I — F
Tﬁ:(2[<£h 3311 ’Elt )9(plt 9plt :plz ):lgr(l)t)(z‘,[(gzt 9221 9321 )’(pzt apzt apzt ):|Pzz(2)tj
r F\ (— T — 1 — F
(Z[(Bnt ’Bnt ’Bnt );(pnt sPu s P )j|P7r(n)tj'
for 7 €S, . Lete be the identity of the group Sn. If 7 =e,then T, =det(P).
Suppose that there exists ke{l,2,...,n} such that 7 (k) = k.Then we see that
— 7 — 1 — F r 7  p\[(—T—1—F
_Z|:< P ’pkz J ) (pk’ Pi > P ):|Pﬂ(k)t :Z|:(£kz Py > Py, );(pkt »Pie > P )}P/‘t
det(P)
— 7T — 1 — F r 1 p\[—T—1—F
Q [Z 11 ’plt ’pn ) (plt s Py s Py ):|Pﬂ(l)tj(2|:(£2t ’221 :th );(Pz, sPo s Py ):|Pzz(2)tj
; r— 1 —
det(P) z|i(—” ’Bnt ’pm ) (pn[ ,pnt Jpnt )}])ﬂ'(n)[ Sdet(lj)

(ii) Let 7 be a permutationin S,. Assume that 7 (k) # k. forall k€ {1,2,..., n} . We know that

every permutation 7t can be written as a product of disjoint cycles i and let 7 =7,7,...7,
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We further assume that 7; =(1 2) transposition. Then €2_has two factors

[

( [ ,p > P );(;uT:l_?nIal_?uF )} Pﬁ(l)t)(Z[(EZtT’EZtI’BZtF);(;%T’;ztl’;zt}? )} P”Q)tj
= (Z[(BMT 5 Bltl ) BltF ) a (;ltr s ;111 > EIZF ):| ])2t )(ZI:(EBT’ £2t1 2 thF )5 (]_?ZtT’ ;Ztl b ;2tF ):| Plt )
)

det(P(2=1))det(P(1=2))<det(P

,p )(pu s P s P ):|])7r(1)t and

P ) (pzt s Doy s P )} P, 1), , and from these we see that

(iii) If 77 =7m7,..7, and 7,(s,t),then we can prove that Q , <det(P)by an argument used in
(ii). Consider Q for 7 =rm7,..7,.1f w=(k,e, f,...), then we see that

o, =(3[(2, 2,2 Kp 2 ) o (] (20 o0 o 2 2 P )
S0 (AR RS EPAR AR | 2l [ RN RS ARy
=det(P(e= k))det(P(f =e))...

we obtain that det(P(e=>k))det(P(f = e))<det(P)and so that Q< det(P).This proves

that det(Padj(P))= det(P).Equally, we can prove that det(adj (P) P) = det(P).
Hence the theorem.
Theorem 7.6 Let P,Q € (NHSRFM),.Then

(i) det(PQ) 2 det(P)det(Q)

(i)  det(PO)<det(P+Q).

Corollary 7.1. Let A bea NHSRFM, P, =(p, ) € (NHSRFM), (r=123,...m).Then

(i) det(mdet(g)...det(g,)sde{igj whrere ip,_ :(ia"ijj e (NHSRFM),.
r=1 n

r=1 r=l1

(i)  det(P")=det(P), where P=(p,)e(NHSRFM), and reN.

Example 7.1. Consider the 4x4 NHSRFM
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— I — 11— F

)\ P Py Pa

F

) e

{ 11 ’pn’pl

T I
(222 ’222 pzz

I F ( T I
’Elz ’Elz £14 ’1214 ’1214

N [— T — 1 — F\] F\[— T — I —F r 1 F
D, aPZ] Py, ), Py 5Py 5Py ), Py Py Py (224 PPy, )s
P=|" Z -
F\f T —-I—F r 1 _F\ (7T I—F T I _F
31 ’p31 ’p31 ) P31 5 P35 P (231 ’£31 ’£31 ) P31 5 P35 P (£34 ’£34 ’£34 )’
o F'_T_[_F_ T F\([ZT—-1—F [ 1 F
(£41 Py 0Py, )’(p41 sPar > Py ) |:(£42 Py Py )’(p42 Par s Pay ):| (244 Py Py ) (
We compute the determinant of the matrix above using the following NHSRFM.
— 7 —1—F — T — 11— F

I:(EHT’BMI’BMF);(
|:<£21T’£211’£21F);(
[([_73;’2331’]_)3;);(_ PP F

j 33 233 ’j 33
( 1 )
_1.43 ’_143 ,_1.43

]

Py s Py s Py

|Pl=

—T—I—F

Py s Po s Py

)| (e
)L

]

—T—[—F
Pus sPa3 »Pa3
(—T—I—F

P s Pu P

—T—I—F

N\ P2 > P21 5P

/—\\_/\_/A
iy

— T — I — F

Py sPxn sPxn

F

1

]
) (e
JNIE

T I
(222 > 222 > Bzz

T — I — F

31 > P31 5 P3

F

31 ’p31’p31 o\ P

|
|

- T — I — F

Py 5Py Py

~

)
)
(e )
(e )

41 ’p41 ’p41

)| (el

] [< DR >(

[(25»&2”2;);( )}

.

P s PP

— T — I — F

Py 5Py sPn

)
]
)l
.

— T — I — F

P, ’p34 P, ) (p34 s P34 5 P34

—T—I—F

44 ap44 ap44 ) (p44 7p44 ap44

(13’p13’p13)(

el e

P13z 5Pz 5P13

— T — I — F

Py 5P 5P

[

F
P, ’p34 Py )

- T — I — F

Pas sPss >Pas

F

44 ’p44 ’p44

-~ ~ ~ \_/ \_/

)
) )

28
- T —1—F
P14:p14:p14
— T — 11— F
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( F) —r—=I1r—Fr T 1 F
b, ’plz Py, Pz s Pz > P Py Py Py

P\ (— T — I — F - ; -
( ’_2 Py Py Py Py (224 Py 0P,

F

T — 1 — F
[(p31 ’p31 Py o\ Pt 5 P31 5 Py )}
T — I — F
41 2 P41 s Pa )}
F

[( 13 ’p13 ’213

P\ (— T — 1 — F
( Dy, ’p23 D, P 5Py sPy )

)
1
(R
)
)
<

F\(— T —1—F
|:(p31 ,p31 P, ) P31 5 P31 5 P3) )}

T I FN\ [ T—- 11— F
[(241 Py Py );(p‘” »Par > Pa )j|

)
ﬁ(154’z54

[(pn ’p33 ’p33

[(p43 PPy );

J [le.e 2

|:(p3z P, ’p32F)

— 7T — 1 —F
;(pm s P1a 5 Pia )i|
— 7T — 1= F
s Pos )}
2<4
— 7 — 1 — F
(p33 > P33 5 P33 )}
— r— I — F
yn ( Puy3 »Pa3 »Pus3 )}
— 7 — 71— F F\ (= T —1—=F
(p13 s P13 5 P13 )} [( P, »p14 P, ) (p14 sPis > P14 )}
— 7 — 1 — F
( ) Py 5P 5 Pos )
2<4

- I — I — F

P sPxn sPxn )}

- T — I — F

T I F\.
[(242 Py Py, )’(p42 »Pa > Py )}

By applying this method, we can determine the determinant of the given NHSRFM.

<0.8,0.7,0.3>,<0.6,0.5,0.4 >).
<0.5,0.9,0.4>,<0.6,0.7,0.8 >).
<0.4,0.6,0.8>,<0.1,0.2,0.3 >).
<0.5,0.3,0.4>,<0.4,0.5,0.3 >).

(< 0.3,0.6,0.3>,<0.3,0.4,0.5 >
(< 0.1,0.3,0.5>,<0.6,0.7,0.8 >
(< 0.9,0.8,0.5>,<0.8,0.7,0.6 >
(< 0.7,0.3,0.2>,<0.1,0.6,0.3 >

e S N

(
|
(
(

(<0.7,0.5,0.4>,<0.2,0.9,0.7 > )|
(<0.1,03,0.5>,<0.2,0.3,0.7 >
(

)
<O90805><080706>)
(<O70302><010603>)

1(<0.8,0.7,0.3>,<0.6,0.5,0.4 >
(<0.5,0.9,0.4 >,<0.6,0.7,0.8 >

<0.6,0.3,0.5>,<0.7,0.8,0.9 >
(< 0.1,0.3,0.6 >,<0.2,0.4,0.7 >

<0.8,0.7,0.3>,<0.6,0.5,0.4 >)
<0.5,0.9,04>,<0.6,0.7,0.8 >

<0.2,0.3,0.4>,<0.2,0.3,0.5>
<04,0.8,0.5>,<0.6,0.5,0.4 >

<0.5,0.9,0.4>,<0.6,0.7,0.8 >

<0.2,0.3,0.4>,<0.2,0.3,0.5>

)
)
)
<0.8,0.7,0.3>,<0.6,0.5,0.4 >)
)
)
<0.4,0.8,0.5>,<0.6,0.5,0.4 >)

)
)
)
)
(<0.7,0.8,0.3>,<0.1,02,0.3>)[]
(<0.4,0.7,0.8>,<0.4,0.5,0.6 >
(
(
(
(
(
(

<0.9,0.8,0.5>,<0.8,0.7,0.6 >
<0.7,0.3,0.2>,<0.1,0.6,0.3 >

<0.1,0.3,0.5>,<0.6,0.7,0.8 >

<0.6,0.3,0.5>,<0.7,0.8,0.9 >

)
)
)
<0.3,0.6,0.3>,<0.3,04,0.5>)
)
)
<0.1,03,0.6>,<0.2,04,0.7 >)
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<0101042<0209ﬁ7>)
<0.1,0.3,0.5>,<0.2,0.3,0.7 >

)
<0.4,0.6,0.8>,<0.1,02,0.3>)
<0.5,03,0.4>,<0.4,0.5,0.3>)

)

<0.7,0.5,0.4>,<0.2,0.9,0.7 >

<0.4,0.6,0.8>,<0.1,0.2,0.3 >
<0.5,0.3,0.4>,<0.4,0.5,0.3>

<04,0.7,0.8>,<0.4,0.5,0.6 >
<0.4,0.6,0.8>,<0.1,0.2,0.3>

(<0.7,0.8,0.3>,<0.1,0.2,0.3>)|
(<0.4,0.7,0.8>,< 0.4,0.5,0.6 >)

<Q%O&Q5%<O&07ﬁ6>)

(

(<QZQ1022<0L0@03>
(<010@032<010%05>
(

<0.1,0.3,0.5>,<0.6,0.7,0.8 >
<0.6,0.3,0.5>,<0.7,0.8,0.9 >

<0.1,0.3,0.5>,<0.6,0.7,0.8 >
<0.2,0.3,0.4>,<0.2,0.3,0.5>

(
(
(
(
(
(<0.1,0.3,0.5>,<0.2,0.3,0.7 >
(
(
(
(
(

)
)
)
)
<0.1,0.3,0.6>,<0.2,0.4,0.7 >)
)
)
)
)

)
) (

) (
<0.7,08,03>,<0.1,02,03>) (<03,0.6,0.3>,<03,04,0.5>
) (

) (

)

(<0.4,0.8,0.5>,<0.6,0.5,0.4 >

(<Qi0&04z<0¢0&03>
=k0L0&OSz<OLQlQ7>+<010i04z<OLOZQ8ﬂ
[<0@01052<0L0@Q9>+<OLO106%<OLQ¢O7ﬂ

+[<0.4,0.7,0.8>,<0.4,0.5,0.6 > + < 0.5,0.8,0.4 >,<0.1,0.2,0.8 >
[<010l042<0LQ&Q5>+<Q¢Q&Q5%<Q@Qi06ﬂ

+[<0.1,0.3,0.5>,<0.6,0.5,0.8 > + < 0.3,0.6,0.4 >,<0.3,0.4,0.8 >]
[<0.1,0.3,0.6>,<0.2,0.3,0.7 >+ < 0.4,0.3,0.5>,< 0.6,0.5,0.9 >]
+[<0.4,0.5,0.8>,<0.2,0.5,0.7 > + < 0.1,0.3,0.5>,<0.1,0.2,0.7 >]
[<0.4,0.3,0.8>,<0.1,0.2,0.3>+<0.5,0.3,0.5 >,< 0.4,0.5,0.6 >]

+k0L0105Z<QLQZQS>+<QLQlQ5z<QLQ&Q7ﬂ
[<0.1,0.3,0.8>,<0.1,0.2,0.7 > + < 0.5,0.3,0.5>,< 0.4,0.5,0.9 >|

+[<0.1,0.3,0.5>,<0.1,0.2,0.8 > + < 0.3,0.6,0.8 >,< 0.3,0.4,0.6 > |
[<Q%OQQ82<OLOLQ4>+<QLQ&04Z<0LQ&QS%

:k0L0i052<010i08ﬂ

8. Conclusion and Future Work

In this study, we investigated the determinant theory of Neutrosophic Hypersoft Rough Fuzzy
Matrices (NHSRFMs) and explored their fundamental structural characteristics. A refined
computational technique was proposed to effectively calculate the determinant of NHSRFMs,

especially in cases involving matrices with a large number of rows and columns. The efficiency and
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practicality of the proposed method were demonstrated through a detailed illustrative example,

reinforcing its potential applicability in environments characterized by uncertainty and imprecision.

Future Work

This research opens several promising directions for future investigation:

Inverse and Adjoint Matrix Structures: Extending the proposed determinant approach to
define and compute the inverse and adjoint of NHSRFMs.

Rank and Eigenvalue Analysis: Developing a framework for determining the rank and
eigenvalues of NHSRFMs, which would contribute to their algebraic characterization.
Optimization in Decision-Making: Applying NHSRFMs to multi-criteria decision-making
(MCDM), medical diagnosis, and expert systems where complex uncertainties are present.
Dynamic and Time-Dependent NHSRFMs: Exploring the application of NHSRFMs in
dynamic systems where matrix entries may evolve over time or context.

Algorithmic Implementations: Designing efficient algorithms and software tools to

automate NHSRFM operations for large-scale real-world data sets.
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